東京大学2018理系第6問V1V3s|空間のグラフ

問題文中に現れるV1とV3の共通部分を概形を把握しやすいように変形した図形のグラフです。 本来の縮尺ですと、あまりに平たいくて概形が確認できないので作成しました。
x軸方向に-1、y軸方向に-0.5だけ平行移動したのち、x軸、z軸方向には1倍、y軸方向に3倍したものを表示しています。
拡大率はa、b、cの値で変更できます。x軸方向がa、y軸方向がb、z軸方向がcで、初期値はそれぞれ、1、3、1です。
文字eの値を変更することで平面y=eで切ったときの断面を表示できます。eの値は変形するまえの座標の値です。eの初期値は1です。
(この値では断面が存在しないので、立体全体が表示されいます。0.5前後で0.01刻みの値に変更すると、断面の様子が確認できます。)
問題文では元の球の半径がrですが、これはこのグラフにおけるdの値に相当します。dの初期値は0.6です。 dの値は変更できます。
文字の値を変更するには、equationボタンを押して数式編集に戻り、varタブをクリック・タップしてvarパネルを表示させます。